Effects of several quinones on insulin aggregation

نویسندگان

  • Hao Gong
  • Zihao He
  • Anlin Peng
  • Xin Zhang
  • Biao Cheng
  • Yue Sun
  • Ling Zheng
  • Kun Huang
چکیده

Protein misfolding and aggregation are associated with more than twenty diseases, such as neurodegenerative diseases and metabolic diseases. The amyloid oligomers and fibrils may induce cell membrane disruption and lead to cell apoptosis. A great number of studies have focused on discovery of amyloid inhibitors which may prevent or treat amyloidosis diseases. Polyphenols have been extensively studied as a class of amyloid inhibitors, with several polyphenols under clinical trials as anti-neurodegenerative drugs. As oxidative intermediates of natural polyphenols, quinones widely exist in medicinal plants or food. In this study, we used insulin as an amyloid model to test the anti-amyloid effects of four simple quinones and four natural anthraquinone derivatives from rhubarb, a traditional herbal medicine used for treating Alzheimer's disease. Our results demonstrated that all eight quinones show inhibitory effects to different extent on insulin oligomerization, especially for 1,4-benzoquinone and 1,4-naphthoquinone. Significantly attenuated oligomerization, reduced amount of amyloid fibrils and reduced hemolysis levels were found after quinones treatments, indicating quinones may inhibit insulin from forming toxic oligomeric species. The results suggest a potential action of native anthraquinone derivatives in preventing protein misfolding diseases, the quinone skeleton may thus be further explored for designing effective anti-amyloidosis compounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Coinage Transition Metal (Cu, Ag, Au) Substitutions on Two-electron Redox Potential of Quinones

Quinones are a class of compounds which have widespread importance in chemistry, biology and medicine. Because of their appropriate performance in electron transferring rate, quinones are among the most applicable mediators in biosensors. Recently, the effects of different non-metal substitutions on redox potential of quinone have been investigated to design suitable mediators for different ele...

متن کامل

Phytochemical investigation of abietanoid quinones: extraction, structure elucidation, toward systhesis in the laboratory

The rootes of Chinese sage, Salvia miltiorrhiza Bunge (labieteae) are used to prepare an important traditional medicine in the Chinese pharmacoepia, Dan Shen. Indeed, related members of this genus are common traditional medicines throughout the world, making Salvia species the targets of intense phytochemical investigations. The active constituents of these species have been reported to be seve...

متن کامل

Phytochemical investigation of abietanoid quinones: extraction, structure elucidation, toward systhesis in the laboratory

The rootes of Chinese sage, Salvia miltiorrhiza Bunge (labieteae) are used to prepare an important traditional medicine in the Chinese pharmacoepia, Dan Shen. Indeed, related members of this genus are common traditional medicines throughout the world, making Salvia species the targets of intense phytochemical investigations. The active constituents of these species have been reported to be seve...

متن کامل

Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro

Objective(s):Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. One of the hallmarks of AD is an abnormal accumulation of fibril forms of tau protein which is known as a microtubule associated protein. In this regard, inhibition of tau aggregation has been documented to be a potent therapeutic approach in AD and tauopathies. Unfortunately, the available syntheti...

متن کامل

Association of quinone-induced platelet anti-aggregation with cytotoxicity.

Various anti-platelet drugs, including quinones, are being investigated as potential treatments for cardiovascular disease because of their ability to prevent excessive platelet aggregation. In the present investigation 3 naphthoquinones (2,3-dimethoxy-1,4-naphthoquinone [DMNQ], menadione, and 1,4-naphthoquinone [4-NQ]) were compared for their abilities to inhibit platelet aggregation, deplete ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014